鲁晨光主页  English Homapage  Papers on ArXiv   Ealier papers about information, information value, and philosophy

 

中文:

信道确证和预测确证——从医学检验到乌鸦悖论 (pdf)


摘要:在证伪和证实之间的长期争论之后,全称假设的证实被不确定大前提的确证所取代。不幸的是,Hemple提出乌鸦悖论(又叫确证悖论)——在等价条件和尼科德准则之间存在矛盾。然后Carnap提出用逻辑概率的增量作为确证测度。为了确证大前提并消除乌鸦悖论,研究者们提出多种确证测度。其中由KemenvOppenheim提出的F测度具有EllesFitelson提出的对称性和不对称性、Crupi等人提出归一性(确证度在-11之间变化)Greco等人提出单调性. 基于语义信息方法并以医学检验为例,作者推导出一个和F类似的确证测度b*b*F同似然比类似,能体现信道或检验手段有多好,但是不能体现概率预测(根据阳性或阴性预测有病或没病)有多好。并且,用b*F或其他测度还是不能清楚解释如何消除乌鸦悖论。为此,作者推导出类似于正确率的确证测度c*c*有形式简单:(a-c)/max(a,c),它明确支持尼科德准则并反对等价条件,因此用它可以消除乌鸦悖论。一个例子表明Fb*有助于同时用核酸试剂和CT诊断新冠病毒,而其它流行的确证测度不行. 另一个例子揭示:所有流行的确证测度都不能用来解释一个黑乌鸦比一支白粉笔更好支持“乌鸦是黑的”.Fb*c*都表明,较少反例比较多正例更重要,它们因此兼容Popper的证伪思想。
关键词
相对熵,确证,语义信息,医学检验,乌鸦悖论,归纳推理, Popper思想.


归纳问题在当代聚焦到确证问题. 关于确证度公式和乌鸦悖论, 全球有数百学者在研究, 数千学者在关注.  它对科学哲学的意义可谓重中之重. 这篇文章问世, 应该会使这一研究告一段落...... 信不信由你!

English:
Channels’ Confirmation and Predictions’ Confirmation:from the Medical Test to the Raven Paradox
(Entropy website)

Abstract: After long arguments between positivism and falsificationism, the verification of universal hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple proposed the Raven Paradox. Then, Carnap used the increment of logical probability as the confirmation measure. So far, many confirmation measures have been proposed. Measure F proposed by Kemeny and Oppenheim among them possesses symmetries and asymmetries proposed by Elles and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many researchers. Based on the semantic information theory, a measure b* similar to F is derived from the medical test. Like the likelihood ratio, measures b* and F can only indicate the quality of channels or the testing means instead of the quality of probability predictions. Furthermore, it is still not easy to use b*, F, or another measure to clarify the Raven Paradox. For this reason, measure c* similar to the correct rate is derived. Measure c* supports the Nicod Criterion and undermines the Equivalence Condition, and hence, can be used to eliminate the Raven Paradox. An example indicates that measures F and b* are helpful for diagnosing the infection of Novel Coronavirus, whereas most popular confirmation measures are not. Another example reveals that all popular confirmation measures cannot be used to explain that a black raven can confirm “Ravens are black” more strongly than a piece of chalk. Measures F, b*, and c* indicate that the existence of fewer counterexamples is more important than more positive examples’ existence, and hence, are compatible with Popper’s falsification thought.

Keywords: relative entropy; cross-entropy; uncertain reasoning; inductive logic; confirmation measure; semantic information; medical test; raven paradox