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Abstract. Popper and Fisher’s hypothesis testing thoughts are very important.
However, Shannon’s information theory does not consider hypothesis testing.
The combination of information theory and likelihood method is attracting more
and more researchers’ attention, especially when they solve Maximum Mutual
Information (MMI) and Maximum Likelihood (ML). This paper introduces how
we combine Shannon’s information theory, likelihood method, and fuzzy sets
theory to obtain the Semantic Information Method (SIM) for optimizing
hypothesis testing better. First, we use the membership functions of fuzzy sets
proposed by Zadeh as the truth functions of hypotheses; then, we use the truth
functions to produce likelihood functions, and bring such likelihood functions
into Kullback-Leibler and Shannon’s information formulas to obtain the
semantic information formulas. Conversely, the semantic information measure
may be used to optimize the membership functions. The maximum semantic
information criterion is equivalent to the ML criterion; however, it is compatible
with Bayesian prediction, and hence can be used in cases where the prior
probability distribution is changed. Letting the semantic channel and the
Shannon channel mutually match and iterate, we can achieve MMI and ML for
tests, estimations, and mixture models. This iterative algorithm is called
Channels’Matching (CM) algorithm. Theoretical analyses and several examples
show that the CM algorithm has fast speed, clear convergence reason, and wild
potential applications. The further studies of the SIM related to the factor space
and information value are discussed.
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1 Introduction

Although Shannon’s information theory [1] has achieved great successes, his infor-
mation concept does not accord with daily usages of “information”. For example,
Shannon’s (amount of) information is irrelevant to the truth and falsity of statements or
predictions. Another problem is that the Shannon theory does not contain hypothesis

© Springer Nature Switzerland AG 2019
B.-Y. Cao and Y.-B. Zhong (Eds.): ICFIE 2017, AISC 872, pp. 1–16, 2019.
https://doi.org/10.1007/978-3-030-02777-3_19

A
u

th
o

r 
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02777-3_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02777-3_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02777-3_19&amp;domain=pdf
https://doi.org/10.1007/978-3-030-02777-3_19


testing thought, and therefore, we cannot use Shannon’s mutual information as criterion
to optimize tests, estimations, and predictions. Popper’s theory of scientific advances
[2] and Fisher’s Likelihood Method (LM) [3] contain hypothesis testing thoughts.
Popper initiates to use (semantic) information criterion to evaluate and optimize sci-
entific hypotheses. His information concept is more accordant with daily usages. Yet,
Popper did not provide proper semantic information formula. So far, what is used to
resolve hypothesis testing problems is Fisher’s likelihood method, which plays an
important role in statistical inference and machine learning. Yet, it is unclear how the
LM is related to semantic meaning and semantic information. Still, the LM is not
compatible with Bayesian prediction well.

According Davidson’s truth-conditional semantics [4], we can use the truth func-
tion of a hypothesis to represent its semantic meaning. According to Zadeh’s fuzzy sets
theory [5], a membership function is also a (fuzzy) truth function of a hypothesis.

There have been some iterative methods for Maximum Mutual Information
(MMI) and Maximum Likelihood (ML), including the Newton method [6], EM
algorithm [7], and minimax method [8]. Still, we want a better method.

Recently, we found that Lu’s semantic information formulas [9–12] could combine
information measures, likelihood functions, and membership functions better for
hypothesis testing. Although Lu did not mention “likelihood” in his earlier studies, in
fact, his “predicted probability distribution” is likelihood function. Using the concepts
of likelihood and semantic channel, we can state Lu’s Semantic Information Method
(SIM) better. We also found that letting the semantic channel and the Shannon channel
mutually match and iterate, we could achieve MMI and ML for tests, estimations, and
mixture models conveniently.

In this paper, we first restate Lu’s SIM in terms of likelihood and semantic channel.
That is to use the fuzzy truth function to produce the likelihood function, and put the
likelihood function into the Kullback-Laibler (KL) information formula and the
Shannon mutual information formula to obtain sematic information formulas. Such a
semantic information measure may contain Popper and Fisher’s hypothesis testing
thoughts. We shall show that new semantic information measure can be used to
evaluate and optimize semantic communication, to improve the LM for variable
sources, and to optimize the membership functions according to sampling distributions.
Then, we simply introduce new iterative algorithm: Channels’ Matching algorithm or
the CM algorithm. For further studies, the information value related to portfolio and
factor space are also simply discussed.

2 Semantic Channel, Semantic Communication Model,
and Semantic Bayesian Prediction

2.1 Shannon Channel and Transition Probability Function

The semantic channel and the Shannon channel may mutually affect. First, we simply
introduce the Shannon channel [1].

Let X be a discrete random variable representing a fact with alphabet A = {x1, x2,
…, xm}, let Y be a discrete random variable representing a message with alphabet
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B = {y1, y2, …, yn}, and let Z be a discrete random variable representing a observed
condition with alphabet C = {z1, z2, …, zw}. A message sender chooses Y to predict
X according to Z. For example, in weather forecasts, X is a rainfall, Y is a forecast such
as “There will be light to moderate rain tomorrow”, and Z is a set of meteorological
data. In medical tests, X is an infected or uninfected person, Y is positive or negative
(testing result), and Z is a laboratory datum or a set of laboratory data.

We use P(X) to denote the probability distribution of X and call P(X) the source,
and we use P(Y) to denote the probability distribution of Y and call P(Y) the destination.
We call P(yj|X) with certain yj and variable X the transition probability function from
X to yj. Then a Shannon’s channel is composed of a group of transition probability
functions [1]:

PðY jXÞ ,
Pðy1jx1Þ Pðy1jx2Þ � � � Pðy1jxmÞ
Pðy2jx1Þ Pðy2jx2Þ � � � Pðy2jxmÞ

� � � � � � � � � � � �
Pðynjx1Þ Pðynjx2Þ � � � PðynjxmÞ

2
664

3
775 ,

PðyjjXÞ
PðyjjXÞ
� � �

PðynjXÞ

2
664

3
775 ð1Þ

The transition probability function has two properties:

(1) P(yj|X) is different from the conditional probability function P(Y|xi) or P(X|yj) in
that whereas the latter is normalized, the former is not. In general,

P
i P(yj|ei) 6¼ 1.

(2) P(yj|X) can be used to make Bayesian prediction to get the posterior probability
distribution P(X|yj) of X. To use it by a coefficient k, the two predictions are
equivalent, i.e.

PðXÞkPðyjjXÞP
i
PðxiÞkPðyjjxiÞ ¼

PðXÞPðyjjXÞP
i
PðxiÞPðyjjxiÞ¼PðXjyjÞ ð2Þ

2.2 Semantic Channel and Semantic Communication Model

In terms of hypothesis testing, X is a sample point or a piece of evidence and Y is a
hypothesis or a prediction. We need a sample sequence or a sampling distribution P
(X|.) to test a hypothesis to see how accurate the hypothesis is.

Letϴ be a random variable for a fuzzy set (defined by Zadeh [5]) and let hj be a value
taken by ϴ when Y = yj. We also treat hj as a predictive model (or sub-model).
A predicate yj(X) means “X is in hj” whose truth function is T(hj|X)ε[0,1]. Because T(hj|
X) is constructed with some parameters, we may also treat hj as a set of model
parameters.

In contrast to the popular likelihood method, we use sub-models h1, h2, …, hn
instead of one model h or ϴ, where a sub-model hj is defined by a truth function
T(hj|X). The likelihood function P(X|hj) here is equivalent to P(X|yj, h) in popular
likelihood method. A sample used to test yj is a sub-sample or conditional sample. We
use the sampling distribution P(X) or P(X|yj) instead of the sample sequence x(1), x(2),
…. to test a hypothesis. These changes will make the new method more flexible and
more compatible with the Shannon information theory.
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When X = xi, yj(X) become yj(xi), which is a proposition with truth value T(hj|xi).
We have the semantic channel:

TðHjXÞ ,
Tðh1jx1Þ Tðh1jx2Þ � � � Tðh1jxmÞ
Tðh2jx1Þ Tðh2jx2Þ � � � Tðh2jxmÞ

� � � � � � � � � � � �
Tðhnjx1Þ Tðhnjx2Þ � � � TðhnjxmÞ

2
664

3
775 ,

Tðh1jXÞ
Tðh2jXÞ

� � �
TðhnjXÞ

2
664

3
775 ð3Þ

This semantic channel can also be used for Bayesian prediction, i.e., semantic
Bayesian prediction, to produce likelihood function:

PðXjhjÞ ¼ PðXÞTðhjjXÞ=TðhjÞ; TðhjÞ ¼
X
i

PðxiÞTðhjjxiÞ ð4Þ

where T(hj) may be called the logical probability of yj. If T(hj|X) / P(yj|X), then the
semantic Bayesian prediction is equivalent to Bayesian prediction according to Eq. (2).
Lu called this formula the set-Bayesian formula in 1991 [9] and put it into a semantic
information measure. According to Dubois and Prade’ paper [13], Thomas (1981) and
Natvig (1983) proposed this formula earlier.

We can also consider that T(hj|X) is defined with normalized likelihood (function),
i.e., T(hj|X) = kP(hj|X)/P(hj) = kP(X|hj)/P(X), where k is a coefficient that makes the
maximum of T(hj|X) be 1. With P(X), T(hj|X) and P(X|hj) can ascertain each other.

Note that T(hj) is the logical probability of yj, whereas P(yj) is the probability of
choosing yj. They are very different. T(ϴ) is also not normalized, and generally there is
T(h1) + T(h2)… + T(hn) > 1. Consider hypotheses y1 = “There will be light rain”,
y2 = “There will be moderate rain”, and y3 = “There will be light to moderate rain”.
According to their semantic meanings, T(h3) � T(h1) + T(h2); however, there may be
P(y3) < P(y1). Particularly, when yj is a tautology, T(hj) = 1 whereas P(yj) is almost 0.
The P(X|hj) is a likelihood function and is also different from P(X|yj) which is a
sampling distribution.

The semantic communication model is shown in Fig. 1.
A semantic channel is supported by a Shannon channel. For weather forecasts, the

transition probability function P(yj|X) indicates the rule of choosing a forecast yj. The
rules used by different forecasters may be different and have more or fewer mistakes.
Whereas, T(hj|X) indicates the semantic meaning of yj that is understood by the
audience. The semantic meaning is generally publicly defined and may also come from
(or be affected by) the past rule of choosing yj. To different people, the semantic
meaning should be similar.

2.3 Is Likelihood Function or Truth Function Provided by the GPS’s
Positioning?

Consider the semantic meaning of the small circle (or the arrow) in the map on a GPS
device. The circle tells where the position of the device is. A clock, a balance, or a

AQ1
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thermometer is similar to a GPS device in that their actions may be abstracted as yj =
“X � xj”, j = 1, 2, …, n. The Y with such a meaning may be called an unbiased
estimate, and its transition probability functions P(yj|X) constitute a Shannon channel.
This semantic channel may be expressed by

T hjjX
� � ¼ exp � X � xj

�� ��2= 2d2
� �h i

; j ¼ 1; 2; . . .; n ð5Þ

where d is the standard deviation.
Consider a particular environment (in Fig. 2) where a GPS device is used in a car.
The positioning circle is on a building. The left side of the building is a highway

and the right side is a road. We must determine the most possible position of the car. If
we think that the circle provides a likelihood function, we should infer “The car is most
possibly on the building”. However, common sense would indicate that this conclusion
is wrong. Alternatively, we can understand the semantic meaning of the circle by a
transition probability function. However, the transition probability function is difficult
to obtain, especially when the GPS has a systematical deviation. One may posit that we
can use a guessed transition probability function and neglect its coefficient. This idea is
a good one. In fact, the truth function in Eq. (5) is just such a function. With the truth
function, we can obtain the likelihood function by the semantic Bayesian prediction:

PðXjhjÞ ¼ PðXÞ exp½�ðX � xjÞ2=ð2d2Þ�P
i
PðXÞ exp½�ðX � xjÞ2=ð2d2Þ�

ð6Þ

This likelihood function accords with common sense and avoids conclusion “The
car is most likely on the building”. This example shows that a semantic channel is
simpler and more understandable than the corresponding Shannon channel.

Fig. 1. The semantic communication model. Information comes from testing the semantic
likelihood function P(X|j) by the sampling distribution P(X|yj).
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3 Semantic Information Measure and the Optimization
of the Semantic Channel

3.1 Semantic Information Measure Defined with Log Normalized
Likelihood

In the Shannon information theory, there is only the statistical probability without the
logical probability and likelihood (predicted probability). However, Lu defined
semantic information measure by these three types of probabilities at the same time.

The (amount of) semantic information conveyed by yj about xi is defined as [10]:

Iðxi; hjÞ ¼ log
PðxijhjÞ
PðxiÞ ¼ log

TðhjjxiÞ
TðhjÞ ð7Þ

where semantic Bayesian prediction is used; it is assumed that the prior likelihood is
equal to the prior probability distribution. For an unbiased estimation, its truth function
and semantic information are illustrated in Fig. 3.

This formula contains Popper’s thought [2] that the less the logical probability is,
the more information there is if the hypothesis can survive tests; a tautology cannot be
falsified and hence contains no information.

Bringing T(hj|X) in Eq. (5) into Eq. (7), we have

Iðxi; hjÞ ¼ logð1=TðhjÞÞ � X � xj
�� ��2= 2d2

� � ð8Þ

where log(1/T(hj)) is the semantic information measure defined by Bar-Hillel and
Carnap [14]. So, semantic information increases with either logical probability or
deviation decreasing. The smaller deviation means that the hypothesis survives tests
better.

Averaging I(xi; hj), we obtain semantic (or generalized) Kullback-Leibler (KL) in-
formation (see [15] for the KL information or divergence):

Fig. 2. The illustration of a GPS’s positioning. When the prior distribution P(X) is uneven and
variable, using a truth function to make a semantic Bayesian prediction will be better than using a
likelihood function to predict directly
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IðX; hjÞ ¼
X
i

PðxijyjÞ logPðxijhjÞPðxiÞ ¼
X
i

PðxijyjÞ log TðhjjxiÞTðhjÞ ð9Þ

The statistical probability or frequency P(xi|yj), i = 1, 2, …, on the left of “log”
above, represents a sampling distribution (note that a sample or sub-sample is also
conditional) to test the hypothesis yj or model hj. If yj = f(Z|ZεCj), then P(X|yj) = P(X|
Z�Cj) = P(X|Cj).

Although Akaike [16] revealed the relationship between likelihood and the KL
divergence [15]. This relationship has attracted more attention in recent decades (see
Cover and Thomas’s text book ([17], Chap. 11.7)). In the following, we try to show
that the relationship between the semantic information measure and likelihood is
clearer.

Assume that the size of a sample used to test yj is Nj, and the sample points come
from independent and identically distributed random variables. Among Nj points, the
number of xi is Nij. When Nj is infinite, P(X|yj) = Nij/Nj. Hence there is the following
equation:

log
Y
i

PðxijhjÞ
PðxiÞ

� �Nji

¼Nj

X
i

PðxijyjÞ logPðxijhjÞPðxiÞ ¼NjIðX; hjÞ ð10Þ

After averaging the above likelihood for different yj, j = 1, 2, …, n, we have

1
N

X
j

log
Y
i

PðxijhjÞ
PðxiÞ

� �Nji

¼
X
j

PðyjÞ
X
i

PðxijyjÞ logPðxijhjÞPðxiÞ

¼
X
i

PðxiÞ
X
j

PðyjjxiÞ log TðhjjxiÞTðhjÞ ¼ IðX;HÞ¼HðXÞ � HðXjHÞ
ð11Þ

Fig. 3. Semantic information is defined with normalized likelihood. The less the logical
probability is, the more information there is; the larger the deviation is, the less information there
is; lastly, a wrong estimation may convey negative information.
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where N = N1 + N2 + …+Nn, H(X) is the Shannon entropy of X, ϴ is one of a group of
models (h1, h2, …, hn), H(X|H) is the generalized posterior entropy of X, and I(X; ϴ) is
the semantic mutual information. This equation shows that the ML criterion is
equivalent to the maximum semantic mutual information criterion or the minimum
generalized posterior entropy criterion. It is easy to find that when P(X|hj) = P(X|yj) (for
all j), the semantic mutual information I(X; ϴ) will be equal to the Shannon mutual
information I(X; Y); the latter is the special case of the former.

3.2 The Optimization of Predictive Models or Semantic Channels

About how we get membership functions, we accept the statistical explanation of
random sets [18]. However, to understand the evolution of membership functions, we
may explain that membership functions evolves when they match the transition
probability function, or say, semantic channels evolve when they match Shannon
channels.

Optimizing a predictive model ϴ is equivalent to optimizing a semantic Channel T
(ϴ|X). For given yj, optimizing hj is equivalent to optimizing T(hj |X) by

T � ðhjjXÞ ¼ arg
TðhjjXÞ

maxIðX; hjÞ ð12Þ

I(X; hj) can be written as the difference of two KL divergences:

IðX; hjÞ ¼
X
i

PðxijyjÞ logPðxijyjÞPðxiÞ �
X
i

PðxijyjÞ log PðxijyjÞPðxijhjÞ ð13Þ

Because the KL divergence is greater than or equal to 0, when

PðXjhjÞ ¼ P Xjyj
� � ð14Þ

I(X; hj) reaches its maximum and is equal to the KL information I(X; yj). Let the two
sides be divided by P(X); then

TðhjjXÞ
TðhjÞ ¼ PðyjjXÞ

PðyjÞ and T hjjX
� � / P yjjX

� � ð15Þ

Set the maximum of T(hj|X) to 1. Then we obtain

T � hjjX
� � ¼ P yjjX

� �
=P yjjxj�

� � ð16Þ
where xj* is the xi that makes P(yj|xj*) be the maximum of P(yj|X). Generally, it is not
easy to get P(yj|X). Yet, for given P(X|yj) and P(X), it is easier to get T(hj|X) than to get
P(yj|X) since from Eq. (16), we can obtain
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T � hjjX
� � ¼ ½P Xjyj

� �
=P Xð Þ�=½P xj � jyj

� �
=P xj�

� �� ð17Þ

The Eq. (12) fits parameter estimations with smaller samples, and Eqs. (16) and
(17) fit non-parameter estimations with larger samples.

Similar to the Maximum-A-Posteriori (MAP) estimation, the above Maximum
Semantic Information (MSI) estimation also uses the prior. The difference is that the
MAP uses the prior of Y or ϴ, whereas the MSI uses the prior of X. The MSI is more
compatible with Bayesian prediction.

4 The CM Algorithm for Tests, Estimations, and Mixture
Models

4.1 The Semantic Channel of a Medical Test

According to Eq. (11), we can obtain a new iterative algorithm, the CM algorithm, to
achieve MMI and ML for uncertain Shannon channels.

For medical tests (see Fig. 4), A = {x0, x1} where x0 means no-infected person and
x1 means infected person, and B = {y0, y1} where y0 means test-negative and y1 means
test-positive.

In medical tests, the conditional probability in which the test-positive for an
infected testee is called sensitivity, and the conditional probability in which the test-
negative for an uninfected testee is called specificity [19]. The sensitivity and speci-
ficity form a Shannon channel as shown in Table 1.

Fig. 4. A 2 � 2 Shannon nosy channel for tests. The channel changes with partition point z′.

Table 1. The sensitivity and specificity form a Shannon’s channel P(Y|X)

Y Infected x1 Uninfected x0
Test-positive y1 P(y1|x1) = sensitivity P(y1|x0) = 1−specificity
Test-negative y0 P(y0|x1) = 1-sensitivity P(y0|x0) = specificity

The Semantic Information Method 9

A
u

th
o

r 
P

ro
o

f



Assume that the no-confidence level of y1 and y0 are b1’ and b0’ respectively.
Table 2 shows the semantic channel for a medical test.

According to Eq. (16), two optimized no-confidence levels are

b01� ¼ P y1jx0ð Þ=P y1jx1ð Þ; b01� ¼ P y0jx1ð Þ=P y0jx0ð Þ ð18Þ

If we use popular likelihood method, when the source P(X) is changed, the old
likelihood function P(X|hj) will be improper. However, the above semantic channel is
still proper for Bayesian prediction (see Eq. (4)) as well as the Shannon channel in
Table 1. Therefore, the SIM can improve the popular likelihood method for variable
sources.

4.2 Matching and Iterating

Matching I (Right-step): The semantic channel matches the Shannon channel. We
keep the Shannon channel P(Y|X) constant, and optimize the semantic channel T(ϴ|X)
(on the right of the log in Eq. (11)) so that P(X|hj) is equal or close to P(X|yj), or T(hj|X)
is proportional or proximately proportional to P(yj|X) for all j,and hence I(X; ϴ) reaches
or approaches its maximum I(X;Y).

Matching II (Left-step): The Shannon channel matches the semantic channel. While
keeping the semantic channel T(ϴ|X) constant, we change the Shannon channel P(Y|X)
(on the left of the log in Eq. (11)) to maximize I(X; ϴ).

Iterating: The two channels mutually match in turn and iterate. The iterative con-
vergence can be proved pictorially [20].

4.3 The Iterative Process for a Test

For the test as shown in Fig. 4, optimizing the Shannon channel is equivalent to
optimizing the dividing point z’. When Z > z’, we choose y1; otherwise, we choose y0.

As an example of the test, Z2C = {1, 2, …, 100} and P(Z|X) is a Gaussian
distribution function:

P Zjx1ð Þ ¼ K1exp � Z � c1ð Þ2= 2d21
� �h i

; P Zjx0ð Þ ¼ K0exp½�ðZ � c0Þ2= 2d20
� ��

Table 2. Two degrees of disbelief forms a semantic channel T(ϴ|X)

Y Infected x1 Uninfected x0
Test-positive y1 T(ϴ1|x1) = 1 T(ϴ1|x0) = b1’
Test-negative y0 T(ϴ0|x1) = b0’ T(ϴ0|x0) = 1

10 C. Lu
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where K1 and K0 are normalizing constants. From P(X) and P(Z|X), we can obtain P(X|
Z). After setting the starting z’, say z’ = 50, as the input of the iteration, we perform the
iteration as follows.

Right-Step: Calculate the following items in turn.

(1) Four transition probabilities P(yj|xi) (i,j = 0,1) for the Shannon channel:
(2) The b1’* and b0’* according to Eq. (18);
(3) T(h1) = P(x1) + b1’*P(x0) and T(h0) = P(x0) + b0’*P(x1);
(4) I(X; h1|Z) and I(X; h0|Z) for given Z (displaying as two curves):

IðX; hjjzkÞ ¼
X
i

PðxijzkÞIðxi; hjÞ; k ¼ 1; 2; . . .; 100; j ¼ 0; 1 ð19Þ

Left-Step: Compare two information function curves I(X; h1|Z) and I(X; h0|Z) over
Z to find their cross point. Use z under or over this point as new z’. If the new z’ is the
same as the last z’ then let z* = z’ (z*: optimal z’) and quit the iteration; otherwise go to
the Right-step. We may also use the following formula as classification function for
new Shannon channel:

PðyjjZÞ ¼ lim
s!1

PðyjÞ½expðIðX; hjjZÞÞ�sP
j0
Pðyj0 Þ½expðIðX; hj0 jZÞÞ�s ; j ¼ 1; 2; . . .; n ð20Þ

4.4 Two Iterative Examples for Tests and Estimations

Iterative Example 1 (for a 2 � 2 Shannon Channel)

Input Data: P(x0) = 0.8; c0 = 30, c1 = 70; d0 = 15, d1 = 10. The start point z’ = 50.
Iterative Process: After the first Left-step, we get z’ = 53; after the second Match-
ing II, we get z’ = 54; after the third Left-step, we get z* = 54.

Iterative Example 2 (for a 3 � 3 Shannon channel)
This example is to examine a simplified estimation. The semantic channel is little

complicated. The principle is the same as that for the test. A pair of good start points
and a pair of bad start points are used to examine the reliability and speed of the
iteration.

Input Data: P(x0) = 0.5, P(x1) = 0.35, and P(x2) = 0.15; c0 = 20, c1 = 50, and
c2 = 80; d0 = 15, d1 = 10, and d2 = 10.

Iterative Results:
(1) With the good start points: z1’ = 50 and z2’ = 60, the number of iterations is 4;

z1* = 35 and z2* = 66.
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(2) With the bad start points: z1’ = 9 and z2’ = 20, the number of iterations is 11;
z1* = 35 and z2* = 66 also. Figure 5 shows the information curves over Z before and
after the iterative process.

4.5 Explaining the Evolution of Semantic Meaning

We may apply the CM algorithm to general predictions, such as weather forecasts. The
difference is that the truth functions of predictions may be various. Then we can explain
semantic evolution. A Shannon channel indicates a language usage, whereas a semantic
channel indicates the comprehension of the audience. The Right-step is to let the
comprehension match the usage, and the Left-step is to let the usage (including the
observations and discoveries) match the comprehension. The mutual matching and
iterating of two channels means that linguistic usage and comprehension mutually
match and promote. Natural languages should have been evolving in this way.

4.6 The CM Algorithm for Mixture Models

A popular iterative algorithm for mixture models is the EM algorithm [7]. We can also
use the CM algorithm to solve maximum likelihood mixture models or minimum
relative entropy mixture models [21]. The convergence proof of the CM algorithm,
without using Jensen’s inequality, is clearer than that of the EM algorithm.

Table 3 shows an example [21]. Two Gussian distribution components with a
group of real parameters produce the mixed distribution P(X). Some guessed param-
eters (including P(Y)) are used to produce the mixed distribution Q(X). The less the
relative entropy or KL divergence H(Q||P) is, the better the model is. For H(Q||
P) < 0.001 bit, the number of iterations is 5.

In this example, Shannon mutual information with real parameters is less than that
with start parameters. This example is a challenge to all authors who prove the standard
EM algorithm convergent. For this example, maximizing likelihoods Q (in [7, 22]) or
Q + H(y) (in [23]) cannot be successful because Q or Q + H(y) with true parameters

Fig. 5. The iteration with bad start points shows that the convergence is reliable. At the
beginning (a), three information curves have small positive areas. At the end (b), three
information curves have large positive areas so that I(X; ϴ) reaches its maximum.

12 C. Lu

A
u

th
o

r 
P

ro
o

f



may be less than Q or Q + H(y) with starting parameters. About how the CM algorithm
solves this problem, see [21] for details.

5 Further Studies

5.1 Optimizing Membership Functions Under the Frame of Factor Space
Theory

The factor space theory proposed by Wang [18] is a proper frame for knowledge
representation and reasoning. Under this frame, many researchers have made mean-
ingful results [24]. In these studies, the background distribution of objective facts in the
factor space is not probability distribution, and the membership function is also not
related to the probability distribution of facts. Now, we can use the probability dis-
tribution of facts in the factor space as the background distribution, by which we can set
up the mutually matching relationship between the membership function and the
probability distribution.

We use fuzzy color classification as example. The factor value of a color is a three
primary color vector (r, g, b). The factor space R-G-B is a cubic with side length 1. The
color vectors (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1), and (1, 1,
1) represent typical black, red, yellow, green, cyan, blue, magenta, and white colors
respectively. Assume the prior probability distribution of all possible colors in the R-G-
B space is P(X). For given y1 = “red color”, the distribution of X is P(X|y1). If the
sample is big enough, we can have continuous P(X| y1) and P(X). Using Eq. (17), we
can obtain the optimized truth function T*(h1|X) of y1 = “X is red” or the membership
function of fuzzy set h1. If the sample is not big enough, we may use Eq. (12) to obtain
T*(h1|X) with some parameters.

If we classify people into fuzzy sets {childhood}, {juvenile}, {youth}, {adult},
{middle-ager}… or classify weathers into {no rain}, {small rain}, {moderate rain},
{moderate to heavy rain}, {heavy rain}, … we may use similar method to obtain the
membership function of each fuzzy set. This method does not require that these sub-
sets form a partition or a fuzzy partition of A. That means we may allow fuzzy sets
{adult} and {middle-ager}, or {moderate rain} and {moderate to heavy rain} (one may
imply another), in A at the same time.

Table 3. Real and guessed model parameters and iterative results

Real
parameters in
P*(X|Y) & P*
(Y)

Starting
parameters;
H(Q||
P) = 0.680
bit

Parameters after
5 right-steps; H
(Q||P) = 0.00092
bit

c d P*(Y) c d P(Y) c d P(Y)
y1 35 8 0.1 30 8 0.5 38 9.3 0.134
y2 65 12 0.9 70 8 0.5 65.8 11.5 0.866
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For a GPS device, main factors are the distances between the device and three
satellites. Using this Semantic Information Method (SIM), we may eliminate the sys-
tematical deviation from other factors. Assume the Shannon channel of a GPS device
is:

PðyjjXÞ ¼ K exp½�jX � xj � Dxj2=ð2d2Þ�; j ¼ 1; 2; . . .; n ð21Þ

where xj denotes pointed position, yj = “X = xj”, K is a constant, De is systematical
deviation, and d denotes the precision. According Eq. (16), the corresponding semantic
channel is

TðhkjXÞ ¼ exp½�jX � xkj2=ð2d2Þ�; k ¼ 1; 2; . . .; n ð22Þ

where xk = xj + Dx. About the applications of the SIM with the factor space theory, we
need further studies.

5.2 Optimizing Predictions with Information Value as Criterion

The incremental entropy proposed by Lu [25] is a little different from that introduced
by Cover and Thomas [17] (Chap. 16). The information for Lu’s incremental entropy is
semantic information. The incremental entropy is

UðXjhjÞ ¼
XW
i¼1

PðxijhjÞ logRi ¼
XW
i¼1

PðxiÞ log
XN
k¼0

qkRik ð23Þ

where xi is a price vector of a portfolio; there are W possible price vectors. The hj is the
model parameters of prediction yj. The number of securities in the portfolio is N. Rik

means the input-output ratio of the k-th security when X = xi, and hence Ri is the input-
output ratio of the portfolio as X = xi. The qk is investment ratio in the k-th security and
q0 means the ratio of safe asset or cash. U is the doubling rate of the portfolio.

If without the prediction yj, U = U(X), then there is the increment of U or infor-
mation value brought by the information:

VðX; hjÞ ¼
XW
i

PðxijhjÞ log½RiðqðyjÞ�Þ=Riðq�Þ� ð24Þ

where q* is the optimal vector of investment ratios without the prediction, and q(yj)* is
the optimal vector based on the prediction.

In some cases, the information value criterion should be better than the information
criterion. We need further studies for predictions with the information value criterion.
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6 Conclusion

This paper restates Lu’s semantic information method to clarify that his semantic
information measure is defined with average log normalized likelihood, discusses the
semantic channel and its optimization and evolution, and reveals that by letting the
semantic channel and Shannon channel mutually match and iterate, we can achieve the
maximum Shannon mutual information and maximum average log-likelihood for tests,
estimations, and mixture models. Several iterative examples show that the CM algo-
rithm has high speed, clear convergence reasons [20, 21], and wide potential
applications1.

The paper also concludes that the tight combination of Shannon information theory
with likelihood method and fuzzy sets theory is necessary for hypothesis testing; with
Lu’s semantic information method, the combination is feasible.

Acknowledgement. The author thanks Professor Peizhuang Wang for his long term supports.
Without his recent encouragement, the author wouldn’t have continued researching to find the
channels’ matching algorithm.

References

1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–429
(1948). 623–656

2. Popper, K.: Conjectures and Refutations. Routledge, London/New York (1963/2005)
3. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philo. Trans. Roy.

Soc. 222, 309–368 (1922)
4. Davidson, D.: Truth and meaning. Synthese 17, 304–323 (1967)
5. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
6. Kok, M., Dahlin, J., Schon, B., Wills, T.B.: A Newton-based maximum likelihood

estimation in nonlinear state space models. IFAC-PapersOnLine 48, 398–403 (2015)
7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via

the EM algorithm. J. R. Stat. Soc., Ser. B 39, 1–38 (1977)
8. Barron, A., Roos, T., Watanabe, K.: Bayesian properties of normalized maximum likelihood

and its fast computation. In: IEEE IT Symposium on Information Theory, pp. 1667–1671
(2014)

9. Lu, C.: B-fuzzy set algebra and a generalized cross-information equation. Fuzzy Syst. Math.
(in Chin.) 5(1), 76–80 (1991)

10. Lu, C.: A Generalized Information Theory (in Chinese). China Science and Technology
University Press, Hefei (1993)

11. Lu, C.: Meanings of generalized entropy and generalized mutual information for coding.
J. China Inst. Commun. (in Chin.) 15(6), 37–44 (1994)

12. Lu, C.: A generalization of Shannon’s information theory. Int. J. Gen. Syst. 28(6), 453–490
(1999)

1 More examples and the excel files for demonstrating the iterative processes can be found at http://
survivor99.com/lcg/CM.html.

The Semantic Information Method 15

A
u

th
o

r 
P

ro
o

f

http://survivor99.com/lcg/CM.html
http://survivor99.com/lcg/CM.html


13. Dubois, D., Prade, H.: Fuzzy sets and probability: misunderstandings, bridges and gaps. In:
Second IEEE International Conference on Fuzzy Systems, 28 March, 1 April (1993)

14. Bar-Hillel, Y., Carnap, R.: An outline of a theory of semantic information. Technical report
No.247, Research Lab. of Electronics, MIT (1952)

15. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1952)
16. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control

19, 716–723 (1974)
17. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiely, New York

(2006)
18. Wang, P.W.: Fuzzy Sets and Random Sets Shadow (in Chinese). Beijing Normal University

Press, Beijing (1985)
19. Thornbury, J.R., Fryback, D.G., Edwards, W.: Likelihood ratios as a measure of the

diagnostic usefulness of excretory urogram information. Radiology 114(3), 561–565 (1975)
20. Lu, C.: The Semantic Information Method for Maximum Mutual Information and Maximum

Likelihood of Tests, Estimations, and Mixture Models. https://arxiv.org/abs/1706.07918, 24
June 2017

21. Lu, C.: Channels’ matching algorithm for mixture models. In: Proceedings of International
Conference on Intelligence Science, Shanghai, pp. 25–28, October 2017

22. Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95–103
(1983)

23. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other
variants. In: Jordan, M.I. (ed) Learning in Graphical Models, pp. 355–368. MIT Press,
Cambridge (1990)

24. Wang, P.Z.: Factor space and data science. J. Liaoning Tech. Univ. 34(2), 273–280 (2015)
25. Lu, C.: Entropy Theory of Portfolio and Information Value (in Chinese). Science and

Technology University Press, Hefei (1997)

AQ2

16 C. Lu

A
u

th
o

r 
P

ro
o

f

https://arxiv.org/abs/1706.07918


Author Query Form

Book ID : 466506_1_En

Chapter No : 19

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections.

Dear Author,
During the process of typesetting your chapter, the following queries have
arisen. Please check your typeset proof carefully against the queries listed below
and mark the necessary changes either directly on the proof/online grid or in the
‘Author’s response’ area provided below

Query Refs. Details Required Author’s Response

AQ1 Please note that the Equations are sequentially renumbered from Eq. (2.1) on.
Kindly check.

AQ2 Please check and confirm the edit made in the page range for Ref. [22].

A
u

th
o

r 
P

ro
o

f



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


