Explaining Color Evolution, Color Blindness, and Color Recognition by the Decoding Model of Color Vision

Chenguang Lu, <u>Icguang@foxmail.com</u>
College of Intelligence Engineering and Mathematics,
Liaoning Engineering and Technology University, Fuxin,
Liaoning, China

用色觉译码模型解释色觉进化,色盲,和颜色识别

鲁晨光 个人主页 http://survivor99.com/ 长沙学院退休教师,辽宁工程技术大学客座教授

研究经历 Research Experience

- In 1980s, studied color vision, philosophy, aesthetics
- In 1990s, studied semantic information theory, color vision, portfolio
- Recently combined semantic information method and likelihood method for machine learning.

Wrote several books about color, beauty, semantic information, and

Portfolio.

• 南航77级,最早研究色觉和美感等

- 哲学问题,因色觉模型涉及模糊数
- 学,当了汪培庄教授的访问学者,
- 完成《广义信息论》。后来研究投
- 资组合理论,下海搞投资。最近在汪老师鼓励下重新搞研究,
- 结合语义信息方法和似然度方法 研究机器学习.

Recent Studies 最近几年研究

• Conference Papers (大多在史教授主编的文集中):

- Channels' Matching Algorithm for Mixture Models 混合模型,改进EM算法
- <u>Semantic Channel and Shannon's Channel Mutually Match for Multi-label Classification 多标签分类</u>
- <u>From Bayesian Inference to Logical Bayesian Inference: A New Mathematical Frame for Semantic Communication and Machine Learning</u> 逻辑贝叶斯推理

Journal Papers:

- Semantic Information G Theory with Formulas for Falsification and Confirmation, Information, 1999,8 上面文章总结
- Channels' Confirmation and Predictions' Confirmation:from the Medical Test to the Raven Paradox, Entropy, 2020,4关于归纳,确证和乌鸦悖论
- Current Study (当前研究,写一篇科学哲学文章)
 The P-T Probability Framework for Semantic Communication,
 Falsification, Confirmation, and Bayesian Reasoning

Zone Models of Color Vision色觉阶段模型

Blueness and Yellowness Redness

Young-Helmholtz 3 primary color Theory

Herring: Opponent color theory Problems:

- 1) Too many parameters; 不美
- 2) Logical confusion;
- 3) Transform from BGR system to HSL system is not convenient

CIELAB Symmetrical Color Model 2006

http://130.149.60.45/~farbmetrik/A/FI06E.PDF

国际照明协会推出对称色觉模型, 弥补Zone Model缺陷,符合屏幕显示需要

Symmetric Colour Vision Model, CIELAB and Colour Information Technology

3. Device and elementary colours in the CIELAB chroma diagram (a*, b*)

I Proposed the Decoding Model of Color Vision in 1986 我30多年前提出的对称色觉模型——译码模型

- 色觉新说及机制模拟, 心理学动态, No.2(1986),36—45
- 色觉的译码模型及其验证, 1989 光学学报, 网上有全文: http://opticswww.opticsjournal.net/ViewFull0.htm?aid=OJ11092 0000369IeLhNk

第9卷 第2期 1989年2月

光 学 学 报
ACTA OPTICA SINICA

Vol. 9, No. 2

February 1989

色觉的译码模型及其验证

鲁 晨 光 (长沙大学计算机中心)

提要

关键词: 颜色视觉;色坐标制;互补色处理;明度;模糊逻辑;模糊译码。

Fig. 1 The resolution pattern of a color vector

Decoding and Opponent Process 译码和互补处理

- Extend 3-8 decoder to fuzzy 3-8 decoder 数字电路中选址用的
- 8 outputs: $[\overline{B}\overline{G}\overline{R}], [\overline{B}\overline{G}R], [\overline{B}GR], [\overline{B}G\overline{R}], [\overline{B}G\overline{R}], [\overline{B}G\overline{R}], [\overline{B}G\overline{R}], [\overline{B}G\overline{R}], [\overline{B}GR], and [\overline{B}GR]$

- Opponent process:
- First to obtain
- M=med(B,G,R)=[BGVBRVGR]
- Then
- R-M, G-M, B-M for six unique
- Colors
- 数学方法是独创的

Opponent-process for blue-yellow pair

Physical Model 物理模型

Extend 3-8 decoder to fuzzy 3-8 decoder

• 关于郭念锋,王雨田,汪培庄老师的支持

Illustrating the Evolution of Color Vision

图解色觉进化

http://survivor99.com/LCG/english/

With cones' splitting from one to three, we can perceive more colors

如果分裂成4根曲线,就可以看出16种—乌龟可以。有此可建立四原色机器人色觉模型。 用色敏感细胞分裂解释色觉进化 进化和设计的区别: 进化从简单到复杂,中间类型都是改进

Illustrating Color Blindness

图解色盲

- Colorblindness
- because cones' sensitive
- curves have not split well

• 这两种一样,不可区分

Illustrating Color Recognition

图解颜色识别

Color decoding in cortex—by decoding again

从神经节细胞到脑皮层的颜色解码?

Potential Applications of the Decoding Neural Network 译码神经网络的潜在应用

- The above Figure remind us that we can use several or many 3-8 or n-2ⁿ decoders to construct a two-layer or multi-layer Decoding Neural Network (DNN).
- 用两层或多层译码器构造译码神经网络
- Compared with the popular neural network, the DNN has different characteristics: 比较:
- It uses fuzzy logic without parameters. 使用模糊逻辑,没有参数
- Every nerve cell in the next layer has inputs that are selected from one sector of the previous layer. 每层输出一个扇区
- The number of non-zero outputs is equal to the number of inputs. 每层不为0的输入个数不变。

Conclusions 结论

- 1. Can better explain
- Opponent Process
- Color Evolution
- Color Blindness
- Color Recognization
- 2. Constructing the
- Decoding Neural Network
- for potential
- applications

Thank you for your patience!

