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Abstract—It is very difficult to solve Maximum Mutual Information 

(MMI) or Maximum Likelihood (ML) for all possible Shannon 

Channels so that we have to use iterative methods. According to the 

Semantic Information Measure (SIM) and R(G) function proposed 

by Chenguang Lu (1993) (where G is the lower limit of the SMI, and  

R(G) is an extension of rate distortion function R(D)), we can obtain 

a new iterative algorithm of solving the MMI and ML for tests, 

estimations, and mixture models. A group of truth functions 

constitute a semantic channel. Letting the semantic channel and 

Shannon channel mutually match and iterate, we can obtain the 

Shannon channel that maximizes mutual information and average 

log likelihood. This iterative algorithm is called Channels’ Matching 

(CM) algorithm. The convergence can be intuitively explained and 

proved by the R(G) function. Several iterative examples show that 

the CM algorithm for tests and  estimations with larger samples is 

simple, fast, and reliable. Multi-label Logical classification is 

introduced in passing. 

Keywords—Shannon channel; semantic channel; semantic 

information; rate distortion; maximum mutual information; 

maximum likelihood; machine learning; multi-label classification 

I. INTRODUCTION 

It is a very important to use the Maximum Mutual 
Information (MMI) or Maximum Likelihood (ML) as criterion 
to optimize tests, estimation, predictions, classifications, image 
compression, and clustering. Yet, the Shannon information 
theory [1] uses distortion criterion instead of the mutual 
information criterion to optimize tests and estimations because 
the optimization for the MMI needs to change the Shannon 
channel. Still, without fixing the Shannon channel, the mutual 
information cannot be calculated. In this paper, the ML means 
the ML for uncertain Shannon’s channels or uncertain 
hypothesis-choosing rules. For this ML and the MMI, we can 
only use iterative methods. 

The relationship between the information measure and 
likelihood [2] has drawn growing attention in recent decades. 
Akaike notes [3] that the maximum likelihood criterion is 
equivalent to the minimum Kullback-Leibller (KL) divergence 
[4] criterion, which is an important discovery. However, the 
divergence does not mean conveyed information. Although the 
log relative likelihood [5] and log normalized likelihood [6] used 
by some researchers are very similar to information measure; yet 
we cannot directly put them into the KL formula or Shannon 
mutual information formula because a sampling distribution is 
generally different from a likelihood function. 

There have been some iterative methods for the MMI and ML, 
including the Newton method [7], the EM algorithm [8], and the 
minimax method [9]. Still, we want a different iterative method 
with higher efficiency and clearer convergence reasons. 

In a different way, Chenguang Lu [10,11,12] directly defined 
the semantic information measure by log normalized likelihood. 
This measure is called the “semantic information measure” 
because a likelihood function is produced by the truth function 
of a hypothesis with the source P(X). Lu also proposed the R(G) 
function (G is the lower limit of the semantic mutual 
information) [12], which was an extension of Shannon’s 
(information) rate distortion function R(D) [13]. Now it is found 
that Lu’s semantic information measure and the R(G) function 
can be used to achieve the MMI and ML more conveniently. 
The new algorithm is called the Channel’s matching algorithm, 
or the CM algorithm. The CM algorithm for tests, estimations, 
and mixture models can be demonstrated by Excel files.1 The 
CM algorithm for mixture models has been discussed by Lu [14]. 

                                                           

1 Excel files can be downloaded from http://survivor99.com/lcg/CM-
iteration.zip 

http://survivor99.com/lcg/CM-iteration.zip
http://survivor99.com/lcg/CM-iteration.zip


 

In this paper, we first restates Lu’s semantic channel, 
semantic information measure, and R(G) function in a new way 
that is as compatible with the Likelihood Method (LM) as 
possible. We then discuss the optimization of truth functions or 
semantic channels, including the optimization of multi-label 
logical classifications. Then, we introduce the CM algorithm for 
tests and estimations with some examples to show its efficiency 
and reliability. 

II. SEMANTIC CHANNEL AND SEMANTIC BAYESIAN PREDICTION 

A semantic channel is supported and affected by a Shannon 
channel. First, we discuss the Shannon channel. 

A. Shannon’s Channel and the Transition Probability Function  

 Let X be a discrete random variable representing an instance 
with alphabet A={x1, x2, …, xm}, let Y be a discrete random 
variable representing a message with alphabet B={y1, y2, …, yn}, 
and let Z be a discrete random variable representing a observed 
condition with alphabet C={z1, z2, …, zw}. A message sender 
chooses Y to predict X according to Z. For example, in weather 
forecasts, X is a rainfall, Y is a forecast such as “There will be 
light to moderate rain tomorrow”, and Z is a group of 
meteorological data.  

We use P(X) to denote the probability distribution of X and 
call P(X) the source, and we use P(Y) to denote the probability 
distribution of Y and call P(Y) the destination. We call P(yj|X) 
with certain yj and variable X a transition probability function 
from X to yj. Then the Shannon’s channel is composed of a 
group of transition probability functions [1]: 
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where a bidirectional arrow means equivalence. The transition 
probability function has two properties: 

1) P(yj|X) is different from the conditional probability 

function P(Y|xi) or P(X|yj) in that whereas the latter is 

normalized,  the former is not. In general, ∑i P(yj|xi)≠1.  

2) P(yj|X) can be used to make Bayesian prediction to get the 

posterior probability distribution P(X|yj) of X. To use it by a 

coefficient, the two predictions are equivalent, i. e. 
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B. Semantic Channel and Semantic Bayesian Prediction 

In terms of hypothesis-testing, X is a piece of evidence and Y 
is a hypothesis or a prediction. We need a sample sequence 

{x(t)|t=1. 2, …, N} or a sampling distribution P(X|.) to test a 
hypothesis to see how accurate it is. 

Let ϴ be a random variable for a predictive model, and let θj 

be a value taken by ϴ when Y=yj. The semantic meaning of a 
predicate yj(X) is defined by θj or its (fuzzy) truth function 
T(θj|X)ϵ[0,1]. Because T(θj|X) may be constructed with some 
parameters, we may also treat θj as a set of model parameters. 
We may also consider that T(θj|X) is defined by a normalized 
likelihood, i. e., T(θj|X)= k P(X|θj)/P(X), where k is a coefficient  
that makes the maximum of T(θj|X) be 1. If T(θj|X)ϵ{0,1}, T(θj|X) 
will be the feature function of a set, whose every element makes 
yj true. Therefore, θj can also be regarded as a fuzzy set, and 
T(θj|X) can be regarded as a membership function of a fuzzy set 
defined by Zadeh [15]. 

In contrast to the popular likelihood method, the above 
method uses sub-models θ1 , θ2, …, θn instead of one model θ or 
ϴ. A sub-model θj  is separated from a likelihood function P(X|θj) 
and defined by a truth function T(θj|X). The P(X|θj) here is 
equivalent to P(X|yj, θ) in the popular likelihood method. A 
sample used to test yj is also a sub-sample or conditional sample. 
These changes will make the new method more flexible and 
more compatible with the Shannon information theory. 

When X=xi, yj(X) becomes yj(xi), which is a proposition with 
truth value T(θj|xi). Then there is the semantic channel: 
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The truth function is also not normalized，and its maximum 
is 1. Like P(yj|X), T(θj|X) can also be used for Bayesian 
prediction, which is called semantic Bayesian prediction, to 

produce likelihood function: 
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where T(θj) is called the logical probability of yj. Lu called it the 
set-Bayes’ formula in his earlier papers [10] and used it for 
semantic information measure. This formula can be found in 
Thomas’ paper published in 1979  [16].  

We may also write T(θj) as T(yj). If T(θj|X)∝P(yj|X), then the 

semantic Bayesian prediction is equivalent to Bayesian 
prediction. Note that T(θj) is the logical probability of yj, 
whereas P(yj) is the probability of choosing yj. The two 
probabilities are very different. For example, when yj is a 
tautology, T(θj)=1; but P(yj) is almost 0.  

A semantic channel is always supported by a Shannon 
channel. For weather forecasts, the transition probability 



 

function P(yj|X) indicates the rule of choosing a forecast yj. The 
rules used by different forecasters may be different and have 
more or fewer mistakes. Whereas, T(θj|X) indicates the semantic 
meaning of yj that is understood by audience. The semantic 
meaning is generally publicly defined and may also come from 
(or be affected by) the past rule of choosing yj. To different 
people, the semantic meaning should be similar. 

III. SEMANTIC INFORMATION MEASURE AND THE 

OPTIMIZATION OF SEMANTIC CHANNELS  

We introduce Lu’s semantic information measure and the 
optimization of semantic channels in relation to likelihood 
method. 

A. Defining Semantic Information with Normalized Likelihood 

In Shannon’s information formulas, there is only the 
statistical probability, without the logical probability or 
likelihood (predicted probability). However, in Lu’s semantic 
information formulas, there are three types of probabilities. The 
semantic information (measure) conveyed by yj about xi is 
defined as log normalized likelihood [10]:  
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where the semantic Bayesian prediction is used; prior likelihood 
is assumed to be equal to prior probability. For an unbiased 
estimation, its truth function and semantic information are 
illustrated in Fig. 1. 

 

Fig. 1. Semantic information measure is defined by log normalized likelihood. 

The larger the deviation is, the less information there is; the less the logical 

probability is, the more information there is; and, a wrong estimation may 

convey negative information. 

This semantic information measure is compatible with 
Popper’s thought [12]. For example, Popper affirms that if a 
hypothesis can survive tests, then the less its logical probabiity is, 
the more information it conveys [17].   

After averaging I(xi; θj), we obtain semantic (or generalized) 
KL information: 
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The statistical probability P(xi|yj)，i=1, 2, …，on the left of 
“log”, represents a sampling distribution (note that a sample or 
sub-sample is also conditional) to test the hypothesis yj or model 
θj. If yj=f(Z|ZϵCj), then P(X|yj)=P(X|ZϵCj)=P(X|Cj). 

Assume that the size of the sample used to test yj is Nj; the 
sample points come from independent and identically distributed 
random variables. Among Nj sample points, the number of xi is 
Nij. When Nj is infinite, P(X|yj)= Nij/Nj. Hence there is log 
normalized likelihood: 
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The semantic information measure increases with likelihood, 
whereas the KL divergence does not [5]. After averaging the log 
normalized likelihood for different yj, we have 
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where I(X; ϴ) is equal to the semantic mutual information [12], 

P(yj)=Nj/N, and N=N1+N2+…+Nn. It shows that the ML criterion 

is equivalent to the minimum generalized posterior entropy 
criterion or Maximum Semantic Information (MSI) criterion. It 
is easy to find that when P(X|θj)=P(X|yj)(for all j), the semantic 
mutual information I(X; ϴ) will be equal to the Shannon mutual 
information I(X;Y). Thus, I(X;Y) is the special case of I(X; ϴ). 

B. The Optimization of Semantic Channels 

Optimizing a predictive model ϴ is equivalent to optimizing 
a semantic Channel or a group of truth functions. For given yj, 
optimizing θj is equivalent to optimizing T(θj |X) by 
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I(X; θj) can be written as the difference of two KL divergences: 
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Because the KL divergence is greater than or equal to 0, when 

P(X|θj)=P(X|yj)   (8) 



 

I(X; θj) reaches its maximum and is equal to the KL information 
I(X; yj). Let the two sides of Eq. (8) be divided by P(X); then 
there are 
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Set the maximum of T(θj|X) to 1. Then we obtain [16] 

T*(θj|X)=P(yj|X)/P(yj|xj*)  (10) 

where xj* is the xi that makes P(yj|xj*) be the maximum of 
P(yj|X). Generally, it is not easy to get the P(yj|X); yet for given 
P(X|yj) and P(X), it is easier to get T(θj|X) than to get P(yj|X) 
since 

T*(θj|X)=[P(X|yj)/P(X)]/[P(xj*|yj)/P(xj*)]        (11) 

where xj* is such an xi that makes P(xj*|yj)/P(xj*) be the 
maximum of P(X|yj)/P(X). Using this optimized truth function, 
the semantic Bayesian prediction will be compatible with 
traditional Bayesian prediction.  

In Eq. (5), when P(Y|X) is fixed, we change T(X|ϴ) so that 

I(X; ϴ) reaches its maximum I(X; Y), which means  “the 
semantic channel matches the Shannon channel”. However, 

conversely, when T(X|ϴ) is fixed, P(Y|X)∝T(X|ϴ) does not 

maximize I(X; ϴ). For given T(X|ϴ), there may be other 
Shannon channels with less noise conveying more semantic 
information. This matching will be discussed later. 

Similar to the Maximum-A-Posterior (MAP) estimation, the 
MSI estimation also uses the prior. The difference is that the 
MAP uses the prior of Y or θ, whereas the MSI uses the prior of 
X. The MSI is more compatible with Bayesian prediction. The 
Eq. (6) fits parameter estimations, and the Eqs. (10) and (11) fit 
non-parameter estimations with larger samples. 

C. Semantic Channels for Multi-label Logical Classifications 
and Single-label Selective Classifications 

Using truth functions or semantic channels, we can obtain a 
new machine learning method or classification method.   

For example, we classify people with different ages X into 
fuzzy sets {juveniles}, {youths}, {middle-aged people}, 
{adults}, …, {old people}, or classify different weathers 
denoted by X, which means 12 hour rainfall and has negative 
value that means light intensity, into {sun shine}, {cloud}, {no 
rain}, {light rain}, {moderate rain}, {heavy rain}, {moderate to 
heavy rain}, …, {storm}. Among hypotheses involved, one may 

imply another. For examples, “X is middle-aged” implies “X is 
adult”; “X is moderate rain” or “X is heavy rain” implies “X is 
moderate to heavy rain”.   

For hypotheses y1=“X is juvenile” and yn=“X is old”, we may 
use logistic functions 
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as their truth functions. For hypotheses y2, …, yn-1 about ages, 
we may use  

2 2( | ) exp[ ( ) / (2 ) ]j j jT X X c d    , j=2, 3, …, n-1  (14) 

or more complicated functions as their truth functions.  

For given examples (x(t), y(t)), t=1,…, N, if t is big enough, 
we may obtain P(xi, yj) and P(xi|yj), i=1,2, …, m; j=1, 2, …, n. 
Then, we may use Eqs. (6) or (10) to optimize these truth 
functions, which can also be called logical classification 
functions. If there is always T(θj|X)≥T(θk|X), then yk implies yj. 

The above method is suitable to cases where P(X) is variable. 
If we do not know P(X), we may assume that P(X) is constant. In 
this case, T(θj|X) is proportional to P(X|θj) and T(θj) is 
proportional to the area that the curve T(θj|X) covers.  

After the truth functions are optimized, for given X=xi, we 
choose a yj as the decision or message according to which θj 
maximizes I(xi; θj). In this case, Y is the function f(X) of X. The 
f(X) ascertains a classification of set A, which may be called 
single-label selective classification. If X is uncertain and with 
probability distribution P(X|y?), we may choose a yj as the 
decision or prediction according to which θj maximizes I(X; θj).  

Different from popular classification methods [18], above 
classification method has features: 

1) It uses normalized likelihood criterion and hence the class-
imbalance has been considered already; 

2) It distinguishes classifications into multi-label logical 
classifications and single-label selective classifications, and 
allows that the logical classification is independent of the 
source, and demands that the selective classification makes 
use of variable source for the sake of ML or MSI;  

For multi-label classification, we may use the first-order 
strategy [19] which decomposes each multi-label example into 
several single-label examples. Then we can obtain P(X, Y) and 
logical classification functions. For given X=xi, only those 
hypotheses with less logical probability may be chosen; however, 
for uncertain X with probability distribution P(X|y?), a fuzzy 
hypothesis, such as “There will be moderate to heavy rain 
tomorrow” may be chosen. I(xi; θj) and I(X; θj) can also be used 
to rank a group of labels for given X=xi or P(X|y?). 

IV. THE MATCHING FUNCTION R(G) OF SHANNON INFORMATION 

AND SEMANTIC INFORMATION  

The R(G) function is an extension of the (information) rate 
distortion function R(D). The R(G) function was used for image 



 

compression according to visual discrimination [12]. Now it can 
be used to explain the CM algorithm. 

A. From the R(D) Function to the R(G) Function 

In the R(D) function, R is the information rate, D is the upper 
limit of the distortion. R(D) means that for given D, R=R(D) is 
the minimum of the Shannon mutual information I(X; Y). The 
rate distortion function with parameter s [20] is 
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where λi=∑j P(yj)exp(sdij) is the partition function. 

Let dij be replaced with Iij= I(xi; yj)=log[T(θj|xi)/T(θj)], and let 
G be the lower limit of the semantic mutual information I(X; ϴ). 
The R(G) function for a given source P(X) is defined as 
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Following the derivation of R(D) [20], we can obtain [12] 
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where mij= P(xi|θj)/P(xi) is the normalized likelihood; λi=∑j P(yi) 

mij
s. We may also use mij= P(xi| θj), which results in the same 

mij
s/λi. The shape of any R(G) function is a bowl-like curve as 

shown in Fig. 2. 

 

Fig. 2. The R(G) function of a binary source (for details, see [12]). As s=1, R=G, 
which implies that the semantic channel matches the Shannon channel; Rmax(Gmax) 
at the top-right corner means that the Shannon channel matches the semantic 
channel so that both R and G are at their maxima. 

The R(G) function is different from the R(D) function.  For a 
given R, we have the maximum value G+ and the minimum 

value G-, which is negative and means that to bring a certain 
information loss to enemies, we also need certain objective 
information R. When R=0, G is negative, which means that if we 

listen to someone who randomly predicts, the information that 
we already have will be reduced. 

In rate distortion theory, dR/dD=s (s≤0). It is easy to prove 
that there is also dR/dG=s, where s may be less or greater than 0. 
The increase of s means the increase of predictive precision or 
the decrease of noise.  

If s changes from positive s1 to -s1, then R(-s1)=R(s1) and G 
changes from G+ to G - (see Fig. 2). 

When s=1, λi=1 and R=G, which means that the semantic 
channel matches the Shannon channel and the semantic mutual 
information is equal to the Shannon mutual information. When 
s=0, R=0 and G(s=0)<0. In Fig. 2, c= G(s=0). 

In fact, in the rate distortion theory, if a larger error 
probability is allowed, the shape of the function R(D) is also a 
bowl-like curve. We can also use a bowl-like R(D) function to 
optimize the camouflaged messages to puzzle enemies. 

B. Viewing the Maximum Likelihood Ratio Tests from the R(G) 
Function 

For a medical test (see Fig. 3), A={x0，x1} where x0 means 

an uninfected person and x1 means an infected person, and 

B={y0, y1} where y0 means test-negative and y1 means test-

positive.  

 

Fig. 3. Illustrating the medical test. The test can be abstracted as a 2×2 Shannon 
nosy channel. The Shannon mutual information changes with dividing point z’. 

In medical tests, for an infected testee x1, the conditional 
probability of a test-positive P(y1|x1) is called sensitivity. For an 
uninfected testee x0, the conditional probability of a test-negative 
P(y0|x0) is called specificity [21]. The sensitivity and specificity 
form a Shannon channel as shown in Table I. 

TABLE I.  THE SENSITIVITY AND SPECIFICITY  OF MEDICAL TESTS FORM A 

SHANNON’S CHANNEL P(Y|X) 

Y Infected x1 Uninfected x0 

Positive y1 P(y1|x1)=sensitivity P(y1|x0)=1-specificity 

Negative y0 P(y0|x1)=1-sensitivity  P(y0|x0)=specificity  

 

If we absolutely believe that a test-positive means being 
infected, and a test-negative means not being infected, then there 
are truth values T(y1|x1)=T(y0|x0)=1, T(y1|e0)=T(y0|x1)=0. If we 



 

use these truth values as the semantic channel, the information 
will be negatively infinite when one counterexample exists. 
Thus, we need to consider the confidence levels of yj. Let the 
confidence level of yj be denoted by b, and let the no-confidence 
level be denoted by b’=1-|b|. Then the truth function of yj may 
be defined as 

T(θj|X)= b’ +bT(yj|X)       (18) 

Here, b’ is also the truth value of a counterexample or the degree 
of falsification of predicate yj(X). 

Assume that the no-confidence level of y1 and y0 are b1’ and 
b0’ respectively; the significance level of a medical test is α. 

Then α means that there should be b0’≤α. Table II shows the 

semantic channel for medical tests. 

TABLE II.  TWO NO-CONFIDENCE LEVELS OF A MEDICAL TEST FORM A 

SEMANTIC CHANNEL T(ϴ|X) 

Y Infected x1 Uninfected x0 

Positive y1 T(θ1|x1)=1 T(θ1|x0)=b1’ 

Negative y0 T(θ0|x1)=b0’ T(θ0|x0)=1 

 

According to Eq. (10), two optimized no-confidence levels 
are 

b1’*= P(y1|x0)/P(y1|x1);   b0’*=P(y0|x1)/P(y0|x0)   (19) 

In the medical community, Likelihood Ratio is used to 
indicate how good a test is [21]. Eq. (19) based on the MSI test 
is compatible with popular Likelihood Ratio (LR) test. There are 

LR+ =P(y1|x1)/P(y1|x0)=1/b1’*;  LR- =P(y0|x0)/P(y0|x1)=1/b0’* (20) 

The LR has been used by Thornbury et al for Bayesian 
prediction [21]. However, it is easier to use the no-confidence 
level for semantic Bayesian prediction. For example, y1=HIV-
positive, b1’*=0.0011. If the testees come from ordinary people 
with P(x1)=0.002, then according to the semantic Bayesian 
formula, 

P(x1|θ1)=0.002/(0.002+0.0011*0.998)=0.65. 

If the testees are gay men with P(x1)=0.1, then 

P(x1|θ1)=0.1/(0.1+0.0011*0.99)=0.991. 

Consider the likelihood ratio of tests without a certain 
partition on C. The likelihood ratio is 
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    (21) 

According to Eqs. (5) and (17), max(logrL)=max(-NH(X|ϴ))-
min(-NH(X|ϴ)=N(G+-G-) (see Fig. 2). After R and G+ are 
ascertained, s and G- are also ascertained. Therefore, the 

maximum likelihood ratio criterion is equivalent to the ML 
criterion or the MSI criterion. 

A binary Shannon channel may be noiseless so that the 
maximum of R is Rmax=H(X). Yet, for the test shown in Fig. 3, 
noise is inevitable, and hence the P(Y|X) for Rmax<H(X) is not 
easy to find. As a result, we need an iterative method. 

V. THE CM ALGORITHM FOR TESTS AND ESTIMATIONS  

This section uses the R(G) function to explain the iterative 
convergence of the CM algorithm, and provide some examples 
to show iterative processes，speeds, and reliability. 

A. Explaining Channels’ Matching and Iterative Convergence 
by R(G) Function  

Matching I (The semantic channel matches the Shannon 
channel): We keep the Shannon channel P(Y|X) constant, and 
optimize the semantic channel T(ϴ|X) so that P(X|θj)=P(X|yj) 
or T(θj|X)∝P(yj|X)，and hence I(X; ϴ)  reaches its  maximum 

I(X;Y). See Fig. 4 for details. 

 

Fig. 4.  Illustrating the iterative convergence for tests and estimations. 

The matching I is for G=R. The matching II is to increase R to the top-

right corner of a R(G) function. Repeating the matching I and matching 

II can maximize R and G to obtain Rmax and Gmax. 

2) Matching II (The Shannon channel matches the semantic 
channel): While keeping the semantic channel T(ϴ|X) constant, 
we change the Shannon channel P(Y|X) to maximize the 
semantic mutual information I(X; ϴ). The R(G) function 
reminds us that R and G can be raised by increasing the 
parameter s. After Matching II， (G, R) locates the top-right 

corner of a R(G) function curve in Fig. 4. 

3)  Matching III (The two channels mutually match and 
iterate): The iterative process is shown in Fig. 4. 

B. Iterative Process for Tests  

We use some examples to show the iterative process. For the 
test as shown in Fig. 3, optimizing the Shannon channel is 



 

equivalent to optimizing the dividing point z’. When Z>z’, we 
choose y1; otherwise, we choose y0. 

As an example of the test, Z∈C={1, 2, …, 100} and P(Z|X) 

is a Gaussian distribution function: 

P(Z|x1)=K1exp[-(Z-c1)2/(2d1
2)],   P(Z|x0)=K0exp[-(Z-c0)2/(2d0

2)] 

where K1 and K0 are normalizing constants. After setting the 
starting z’, say z’=50, as the input of the iteration, we perform 
the iteration as follows. 

The Matching I: Calculate the following items in turn: 

• The transition probabilities for the Shannon channel: 
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• The no-confidence levels b1’* and b0’*; the logical 
probabilities T(θ1)=P(x1)+b1’*P(x0) and T(θ0)=P(x0)+b0’*P(x1). 

• Information: Iij=I(xi; θj) for i=0, 1 and j=0, 1; 

• The average semantic information: I(X;θ1|Z) and 
I(X;θ0|Z) for given Z (displaying as two curves): 

( ; | ) ( | )j k i k ij

i

I X z P x z I  ，k=1, 2, …, 100; j=0, 1    (22) 

The matchning II: Compare two information function curves 
I(X; θ1|Z) and I(X; θ0|Z) over Z to find their cross point. Use the 
zk of this point as new z’. If the new z’ is the same as the last z’ 
then let z*=z’ (where z* is the optimized dividing point) and quit 
the iteration; otherwise go to Matching I.  

We may also use the following partitioning function  
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 j=1, 2, …, n  (23) 

which tells us the optimal dividing point z*. Even if Z is multi-
dimensional, the above equation is also tenable. This formula 
can save our energy for searching the boundaries of Cj for all j. 

C. Three Iterative Examples for Tests and Estimations 

The following are three computing examples. In Example 2 
and Example 3, there are two dividing points z1’ and z2’. The 
iterative principle is the same. 

Experiment Report 1 (for a 2×2 Shannon Channel) 

Input data: P(x0)=0.8; c0=30, c1=70; d0=15, d1=10. The start 
point z’=50.  

The iterative process: Matching II-1 gets z’=53; Matching 
II-2 gets z’=54; Matching II-3 gets z*=54. 

Comparison: To see information loss, we get H(X)=0.72 bit; 

I(X; Z)=0.55 bit; and I(X; ϴ)= I(X; Y)=∑kP(zk)I(X; Y|zk)=0.47 bit. 

Analysis: If we use minimum error rate as criterion, the 
optimal dividing point is 57; yet the above optimal dividing 
point is z*=54. It is shown that in comparison with minimum 
error rate criterion, the MSI criterion puts more attention to the 
correct predictions of small probability events and allow more 
false positives and less false negatives. 

Experiment Report 2 (for a 2×3 Shannon channel) 

For this channel, if z1’<Z ≤ z2’, Y=y2 means “The test tells 
nothing”. 

Input data: P(x0)=0.8; c0=30, c1=70; d0=15, d1=10. The start 
point z’1=50 and z2’=60. 

The iterative progress: Matching II-1 gets z1’=46 and 
z2’=57; Matching II-2 gets z1’=47 and z2’=59; Matching II-3 gets 
z1*=47 and z2*=59. 

Comparison and analysis: H(X)=0.72 bit; I(X; Z)=0.55 bit; 
I(X; ϴ)=0.52 bit. Yet in Example 1, I(X; ϴ)=0.47 bit. So, This 

2×3 channel can convey more semantic information than the 

above 2×2 channel. This example shows that we may use 
hypothesis y2 instead of the significance level α. 

Experiment Report 3 (for a 3×3 Shannon channel) 

This experiment is to examine a simplified estimation. A pair 
of good start points and a pair of bad start points are used to 
check the convergence and speed of the iteration.  

Input data: P(x0)=0.5, P(x1)=0.35, and P(x2)=0.15; c0=20, 

c1=50, and c2=80; d0=15, d1=10, and d2=10.  

The iterative results:  

a) With the good start points: z1’=50 and z2’=60, the number 
of iterations is 4; z1*=35 and z2*=66.  

b) With the bad start points: z1’=9 and z2’=20, the number of 
iterations is 11; z1*=35 and z2*=66 also. Fig. 5 shows the 
information curves over Z before and after the iteration.  

The above estimation does not use parameters and fits larger 
samples. If m is larger and the sample is smaller, we need 
parameter estimations. The truth functions may be T(θj|X)=exp[-
(X-xj)2/(2d2)]. The CM algorithm also works for parameter 
estimations for which Eq. (6) is needed.  

D. The Comparison of Speeds 

In the examples of tests and estimations we used, the most 
numbers of iterations for convergence are between 3 to 5. We 
have compared the CM algorithm with the EM algorithm and 
Newton method for mixture models and found that the CM was 
clearly faster [14]. The CM algorithm for tests and estimations is 
much simpler than the CM algorithm for mixture models. It may 
be expected that The CM algorithm for tests and estimations is 
also clearly faster than the popular methods.    

http://scholar.google.com.hk/scholar?q=minimum+error+probability&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwi4xJSosL3TAhVS9WMKHfkfD7IQgQMIITAA
http://scholar.google.com.hk/scholar?q=minimum+error+probability&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwi4xJSosL3TAhVS9WMKHfkfD7IQgQMIITAA
http://scholar.google.com.hk/scholar?q=minimum+error+probability&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwi4xJSosL3TAhVS9WMKHfkfD7IQgQMIITAA
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Fig. 2. The iteration with bad start poins. At the beginning of the 

iteration (a), three information curves cover very small positive areas. 

At the end of the iteration (b), three information curves cover much 

larger positive areas so that I(X;ϴ) reaches its maximum.  

E. Explaining the Evolution of Natural Language 

We may apply the CM algorithm to communications with 
natural language, such as weather forecasts. Then we can 
explain the evolution of natural language. A Shannon channel 
indicates a language usage, whereas a semantic channel 
indicates the comprehension of the audience. The Matching I is 
to let the comprehension match the usage, and the Matching II is 
to let the usage (including the observations and discoveries) 
match the comprehension. The mutual matching and iterating of 
two channels means that linguistic usage and comprehension 
mutually promote. Natural languages should have been evolving 
in this way. 

VI. CONCLUSIONS  

This paper restates Lu’s semantic information method and 
reveals that by letting the semantic channel and Shannon 
channel mutually match and iterate, we can achieve the 
maximum mutual information and maximum average log-
likelihood for tests and estimations. The iterative convergence 
can be intuitively explained and proved by Lu’s R(G) function. 
Several iterative examples and theoretical analyses show that the 
CM algorithm for tests and estimations is simple, fast, and 

reliable. The paper also reveals that the tight combination of the 
Shannon information theory with the likelihood method and the 
fuzzy sets theory is necessary and feasible.  
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